
J. Fluid Mech. (2005), vol. 523, pp. 37–78. c© 2005 Cambridge University Press

DOI: 10.1017/S0022112004002101 Printed in the United Kingdom

37
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Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing
layer whose lower stream is initially laden with liquid drops which may evaporate
during the simulation. The gas-phase equations are written in an Eulerian frame for
two perfect gas species (carrier gas and vapour emanating from the drops), while
the liquid-phase equations are written in a Lagrangian frame. The effect of drop
evaporation on the gas phase is considered through mass, species, momentum and
energy source terms. The drop evolution is modelled using physical drops, or using
computational drops to represent the physical drops. Simulations are performed
using various LES models previously assessed on a database obtained from direct
numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS)
fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The
LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser
LES grid, are conducted with 64 times fewer grid points than the DNS, and up to
64 times fewer computational than physical drops. It is found that both constant-
coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are
overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures.
Although the global growth and mixing predictions of LES using Smagorinsky models
are in good agreement with the FC-DNS, the spatial distributions of the drops
differ significantly. In contrast, the constant-coefficient scale-similarity model and
the dynamic gradient model perform well in predicting most flow features, with the
latter model having the advantage of not requiring a priori calibration of the model
coefficient. The ability of the dynamic models to determine the model coefficient
during LES is found to be essential since the constant-coefficient gradient model,
although more accurate than the Smagorinsky model, is not consistently numerically
stable despite using DNS-calibrated coefficients. With accurate SGS-flux models,
namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold
reduction in computational drops compared to the number of physical drops, without
degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

1. Introduction
Two-phase (TP) flows involving evaporating liquid drops being transported by a

turbulent flow occur in many applications of practical interest, such as household
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cleaning products, pharmaceutical inhalers, office printers, gas turbine engines and
spray-chemical-conversion reactors. In many of these situations, good atomization
means that the size of the drops should be minimized. When the size of the drops is
much smaller than the Kolmogorov scale and the volumetric loading is small (�10−3),
Boivin, Simonin & Squires (1998) have shown that the drops can be treated as point
sources of mass, momentum and energy into the gas phase. In such situations, TP
direct numerical simulation (DNS) can be conducted with the resolution adequate for
single-phase (SP) flow and the meaning of DNS for such TP flows is thus identical to
that of SP flows in that all turbulence scales of the gaseous flow are resolved. When
the mass loading is small, the effect of the flow field on the drops can be modelled
through one-way coupling, as the flow influences the drops but their presence does
not affect the flow. Due to the large ratio of liquid density to carrier-gas density, the
mass loading may however be significant, causing the drops to considerably influence
the flow, and two-way coupling may prevail. Recent TP DNS for such flows, for
isotropic turbulence, include those of Boivin et al. (1998) and Mashayek & Jaberi
(1999) for solid particles without phase change and those of Mashayek (1998a) and
Réveillon & Vervisch (2000) for evaporating drops. Other DNS with evaporating
drops have been performed by Mashayek (1998b) for homogeneous shear flow and
by Miller & Bellan (1999, 2000) and Okong’o & Bellan (2004) (Part 1) for temporal
mixing layers. The study of the irreversible entropy production (i.e. dissipation) using
the DNS database in Part 1 suggested caution in extrapolating solid particle results
to the realm of evaporating drops, as most of the dissipation was of thermodynamic
and evaporative, rather than dynamic, origin.

On the other hand, large-eddy simulation (LES) is less computationally demanding
than DNS. A coarser grid can be used in LES, since only the large scales are resolved
while the subgrid scales (SGSs) are modelled, and a smaller number of ‘computational’
drops may be used to represent the full number of physical drops. The LES gas-phase
equations are obtained from the DNS set by spatial filtering and through this process,
in a compressible multi-species formulation, SGS momentum, energy and species
fluxes arise from the convective terms (the SGS fluxes appearing in the momentum
equation are the SGS stresses). The SGS fluxes and the filtered source terms (FSTs)
in the LES equations cannot be computed from the resolved filtered flow field, and
must instead be modelled. Most LES of TP flows have neglected direct SGS effects
on the particles; such an approach was justified by Wang & Squires (1996), who
found SGS effects, included by modifying the gas-phase velocity felt by the particles,
to be negligible. Recent TP LES, including those by Boivin, Simonin & Squires
(2000), Deutsch & Simonin (1991), Simonin, Deutsch & Boivin (1995), Uijttewaal &
Oliemans (1996), Wang & Squires (1996) and Yamamoto et al. (2001), have been for
an incompressible gas phase laden with small solid particles with one-way coupling
(Boivin et al. 2000 and Yamamoto et al. 2001 also considered two-way coupling).
These studies used physical or computational particles whose evolution was entirely
governed by the resolved flow field. Because the SGS modelling in these LES was
confined to the gas phase, SGS-flux models for incompressible SP flow could be
used; these LES used constant-coefficient or dynamic-coefficient Smagorinsky (see
Smagorinksy 1993) SGS-flux modelling, which is based on gradient diffusion with
an eddy viscosity coefficient. The Smagorinsky model was also used in the TP
LES of solid particles by Yuu, Ueno & Umekage (2001); in their incompressible
flow, the particles were assumed monodisperse, and the SGS-flux of drop number
density appearing in the FSTs was also modelled using the gradient-diffusion
concept.
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However, for the situation of evaporating drops, where two additional equations (for
energy and species mass) are needed, a compressible formulation must be employed
to account for the density change in the gas phase. Although several SP studies have
considered SGS models for the energy equation, the type of SGS model depends on
the form of the energy equation used (see Erlebacher et al. 1992; Fureby 1996; Martin,
Piomelli & Candler 2000); typically, the same formulation is used for modelling the
energy and species-mass SGS fluxes. SGS TP flow models that treated the modelling
of the drop contribution were presented by Miller & Bellan (2000) and Okong’o &
Bellan (2000), but in these studies the size of the drop ensemble was not reduced nor
were the FSTs, representing the effect of the drops on the flow field, considered. Such
considerations have been addressed by Sankaran & Menon (2002) for TP LES of
swirling flow with evaporating drops, wherein the SGS effects on the computational
drops were modelled using the same approach as Wang & Squires (1996), that is,
by modifying the flow velocity felt by the particles. Sankaran & Menon (2002) used
the Smagorinsky eddy-viscosity approach to model the SGS fluxes in the momentum
equation, as well as in the species and energy equations; however, they did not
perform comparisons to experiments or DNS.

In the present paper, we perform LES for the same conditions as the temporal
mixing layer TP DNS of Part 1, using that DNS database for rigorous a posteriori
assessment of the SGS-flux and FST models that were analysed a priori in Part 1.
The a priori study of these models led to the conclusion that models developed for
SP LES were suitable for the SGS fluxes. While some of the FST models of Part 1
did incorporate direct SGS effects on the drops, the additional complexity introduced
by modelling direct SGS effects on the drops is here neglected, in order to investigate
solely the SGS-flux models and the method for reducing the number of computational
drops. The FST models without direct SGS effects on drops were found in Part 1
to be almost as good as those that accounted for such effects deterministically, and
superior to those that accounted for them statistically.

This paper is organized as follows: The LES equations are presented in § 2, and
models for unclosed terms appearing in these equations, namely the SGS fluxes and
the FSTs, are listed. The general approach is to keep the LES methodology as close to
the DNS as possible, in order to minimize sources of discrepancy not directly related
to explicit modelling issues. The LES initial conditions and numerical procedures are
described in § 3, followed in § 4 by an a priori analysis of the interpolation error that
arises when the flow field encountered by the drops is represented on the coarser
LES grid. LES results are presented in § 5 for a single-phase mixing layer and in § 6
for a two-phase mixing layer laden with evaporating drops. Finally, conclusions and
further discussions are presented in § 7.

2. LES equations and models
In Part 1, we derived the LES equations appropriate for a flow laden with eva-

porating drops, with the gas phase formulated in an Eulerian frame and the drops
(liquid phase) tracked in a Lagrangian frame. Drops tracked in LES follow the
DNS evolution equations; however, in LES one may use computational drops rather
than physical drops. Following the SP protocol, the LES equations are derived by
spatially filtering the gas-phase DNS equations, and then making various simplifying
assumptions which were validated on the DNS database. This procedure is described
in detail in Part 1 and the resulting equations are summarized here. The DNS
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equations, also presented in detail in Part 1, are based on the formulation of Miller &
Bellan (1999).

The gas-phase equations are formulated for two species, namely the carrier gas
and the vapour evolving from the drops. The coupling describing the interaction
between the two phases is provided in the gas-phase conservation equations by source
terms and in the drop-evolution equations by the far-field condition for each drop,
which is calculated by interpolating the gas-phase solution from the Eulerian grid to
the drop location. The drops are treated as point sources of mass, momentum and
energy for the gas phase; this treatment is justified by the dilute (i.e. volumetrically
small, O(10−3)) loading and by the size of each particle being much smaller than the
Kolmogorov scale. Each drop is assumed to be spherical, and, consistent with the
drop description as a point source, its internal temperature and density are assumed
uniform. Furthermore, we neglect unsteady drag and added mass effects, as well as
Basset history forces, all of which are small for liquid-to-gas density ratios (Boivin
et al. 1998). Drop collisions are assumed negligible.

For ease of notation, we define the vector of gas-phase conservative variables
φ = {ρ, ρui , ρet , ρYV } and denote the flow field as φ, where ρ is the density, ui

is the velocity in the xi coordinate direction, et is the total energy and YV is the
vapour (subscript V ) mass fraction (the carrier gas, subscript C, mass fraction is YC;
YC + YV =1). For a variable ϕ, ϕ̄ denotes spatial filtering whereas ϕ̃ = ρϕ/ρ̄ denotes
the Favre (density-weighted) spatial filtering. We define Z = {Xi, vi, Td, md} as the
physical drop field with position Xi , velocity vi , temperature Td , and mass md . The
drop evolution depends on the gas-phase primitive variables, ψ(φ) = {ui, T , YV , p},
evaluated either at the drop surface (subscript s) or at the drop far-field (subscript f );
T is the temperature and p is the pressure. The LES (i.e. filtered) flow field is denoted
as φ̄; Z̄ is the LES (i.e. computational) drop field.

2.1. Liquid-phase LES equations

The evolution equations for the computational drops, in a Lagrangian frame, are:

dXi

dt
(Z̄) = vi, (2.1)

dvi

dt
(ψf , Z̄) =

1

md

Fi(ψf , Z̄), (2.2)

dTd

dt
(ψf , ψs, Z̄) =

1

mdCL

[Q(ψf , Z̄) + ṁd(ψf , ψs, Z̄)LV (Z̄)], (2.3)

dmd

dt
(ψf , ψs, Z̄) = ṁd(ψf , ψs, Z̄), (2.4)

where Fi is the drag force, Q is the heat flux, ṁd is the evaporation rate, and
CL is the heat capacity of the drop liquid. LV is the latent heat of vaporization,
which, for the present calorically perfect gas, is a linear function of temperature,
LV =h0

V − (CL − Cp,V )Td , where h0
V accounts for the enthalpy difference between the

vapour and carrier gas at reference conditions and Cp is the gas-phase heat capacity
at constant pressure. The detailed expressions for Fi , Q, and ṁd involve validated
correlations for point drops which are based on Stokes drag, with the particle time
constant defined by Crowe, Chung & Troutt (1998) as τd = ρLd2/(18µ), where ρL is
the density of the liquid, d is the drop diameter (md = ρLπd3/6) and µ is the gas-phase
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viscosity:

Fi(ψf , Z̄) =
md

τd

f1(ui,f − vi), (2.5)

Q(ψf , Z̄) =
md

τd

Nu

3 Pr
Cp,f f2(Tf − Td), (2.6)

ṁd(ψf , ψs, Z̄) = −md

τd

Sh

3Sc
ln(1 + BM ). (2.7)

In (2.5), f1 is an empirical correlation to correct the Stokes drag for finite drop
Reynolds numbers

f1 =
1 + 0.0545 Resl + 0.1 Re1/2

sl (1 − 0.03 Resl)

1 + a| Reb|b , (2.8)

a = 0.09 + 0.077 exp(−0.4 Resl), b = 0.4 + 0.77 exp(−0.04 Resl), (2.9)

based on the slip Reynolds number Resl = |ui,f − vi |ρd/µ, where (ui,f − vi) is the
slip velocity, and on the blowing Reynolds number Reb = Ubρd/µ, where Ub is
the blowing velocity obtained from the mass conservation relation at the drop
surface, ṁd = −πρd2Ub. The correlation of (2.8) is valid for the ranges 0 � Resl � 100
and 0 � Reb � 10. In (2.6) and (2.7), the gas-phase Prandtl and Schmidt numbers,
Pr = µCp/λ and Sc = µ/(ρD), based on the gas-phase diffusion coefficient (D)
and thermal conductivity (λ), are assumed constant. In (2.6), f2 = β/(eβ − 1), where
β = −1.5Prṁdτd/md is constant for drops obeying the classical ‘d2 law’ (Williams
1965). In (2.7), the mass transfer number is BM = (YV,s − YV,f )/(1 − YV,s) for which
YV,s is calculated by equating the vapour and liquid fugacities at the surface,
i.e. (msYV,s/mV )ps = psat where m =(YV /mV + YC/mC)−1 is the gas-phase molar mass
and mC and mV are the molar masses of the carrier gas and vapour respectively
(also ps =pf ). The saturation pressure, psat, is provided by the Clausius–Clapeyron
relation as

psat =patm exp

[
LV mV

Ru

(
1

TB,L

− 1

Td

)]
(2.10)

with patm = 1 atm; TB,L is the liquid saturation temperature at patm (i.e. the normal
boiling temperature) and Ru is the universal gas constant. Finally, the Nusselt, Nu,
and Sherwood, Sh, numbers appearing in (2.6) and (2.7) are empirically modified
for convective corrections to heat and mass transfer based on the Ranz–Marshall
correlations

Nu = 2 + 0.552 Re1/2
sl ( Pr)1/3, Sh= 2 + 0.552 Re1/2

sl (Sc)1/3. (2.11)

Except for τd , which depends on µ, (2.5)–(2.7) depend essentially on ratios of
transport properties through non-dimensional numbers. Therefore, the value of τd

and thus, for a given liquid and drop size, the value of µ determines the interaction
time between drops and gas.

These expressions for Fi , Q, and ṁd are such that the drop evolution equations are
highly nonlinear functions of both the drop state and the gas phase. The unfiltered
flow field (ψ) must be calculated from φ̄ using a model, as discussed in § 2.3.
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2.2. Gas-phase LES equations

The adopted form of the gas-phase LES equations, resulting from the analysis in
Part 1, is:

∂ρ̄

∂t
+

∂(ρ̄ũj )

∂xj

= S̄I , (2.12)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũi ũj )

∂xj

= −∂[p(φ̄)]

∂xi

+
∂σij (φ̄)

∂xj

+ S̄II,i − ∂(ρ̄τij )

∂xj

, (2.13)

∂(ρ̄ẽt )

∂t
+

∂(ρ̄ẽt ũj )

∂xj

= −∂[p(φ̄)ũj ]

∂xj

− ∂qj (φ̄)

∂xj

+
∂[σij (φ̄)ũi]

∂xj

+ S̄III − ∂ρ̄ζj

∂xj

− ∂

∂xj

[ρ̄τij ũi],

(2.14)

∂(ρ̄ỸV )

∂t
+

∂(ρ̄ỸV ũj )

∂xj

= −∂jVj (φ̄)

∂xj

+ S̄I − ∂(ρ̄ηj )

∂xj

, (2.15)

where the SGS fluxes are

τij = ũiuj − ũi ũj , ζj = h̃uj − h̃ũj , ηj = ỸV uj − ỸV ũj . (2.16)

The internal energy (e = et − uiui/2), the enthalpy (h = e + p/ρ), p and T have the
same form as for DNS, for a calorically perfect gas:

p(φ) = ρR(φ)T (φ), (2.17)

h(φ) = Cp(φ)T (φ) + h0
V YV = hCYC + hV YV , (2.18)

where R(φ) = Ru/m(φ); Cp(φ) = Cp,V YV + Cp,CYC with Cp,C and Cp,V here assumed
constant. The viscous stress (σij ), the heat flux (qj ), and the vapour mass flux (jVj )
also have the same form as for DNS:

σij (φ) = 2µ
(
Sij − 1

3
Skkδij

)
, Sij (φ) =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.19)

jVj (φ) = −ρD

[
∂YV

∂xj

+
(mC − mV )

m(φ)

YV YC

p(φ)

∂ [p(φ)]

∂xj

]
, (2.20)

qj (φ) = −λ
∂ [T (φ)]

∂xj

+ [hV (φ) − hC(φ)] jVj (φ), (2.21)

where Sij is the rate of strain and thermal diffusion effects have been neglected. In
(2.19)–(2.21), D, λ and µ are assumed constant.

Equations (2.12)–(2.15) assume that

1
2
(ρuiuiuj − ρuiuiũj ) = ρτij ũi , (2.22)

and that f (φ) = f (φ̄), i.e.

ẽ = e(φ̄), T = T (φ̄), T̃ = T (φ̄), p̄ = p(φ̄), h̃ = h(φ̄), (2.23)

σ ij = σij (φ̄), uiσij = ũiσij (φ̄), j̄Vj = jVj (φ̄), q̄j = qj (φ̄). (2.24)

These assumptions were assessed on the DNS database and found to be valid (Part 1).
Equations (2.12)–(2.15) for φ̄ contain terms that cannot be computed directly from φ̄

and that therefore must be modelled, namely (i) the FSTs (S̄ = {S̄I , S̄II,i, S̄III, S̄I }) and
(ii) the SGS fluxes (τij , ζj , ηj ).
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2.3. Models for filtered source terms

For the FSTs, S̄ is properly interpreted by considering a physical drop α located at
Xα within the filtering volume Vf and its contribution within that volume:

S̄α(x) =

∫
Vf

[Sd]αδ( y − Xα)G(x − y) d y, (2.25)

where the delta function δ( y − Xα) restricts the action of the drop source term
contribution Sd to the drop location Xα . When the filter function G is a top-hat filter,
the exact FSTs are

S̄(ψf , Z) =

Nα∑
α=1

S̄α =
1

Vf

Nα∑
α=1

[Sd(ψf , Z)]α, (2.26)

a volume-average over the Nα physical drops within Vf , with

Sd(ψf , Z)= {SI,d, SII,i,d , SIII,d , SI,d}, (2.27)

SI,d = −ṁd, (2.28)

SII,i,d = −[Fi + ṁdvi], (2.29)

SIII,d = −
[
Fivi + Q + ṁd

(
1
2
vivi + Cp,V Td + h0

V

)]
. (2.30)

In LES, neither Z nor ψ is available, therefore the FSTs must be modelled from Z̄

and φ̄; these modelling requirements are specific to TP flows. In Part 1, we proposed
several models for the FSTs and assessed them a priori. For Z̄, we proposed to
allow each computational drop to replace NR physical drops and to compute the
contribution of each computational drop as in the DNS. The resulting model for S̄

was

S̄m(ψf,m(φ̄), Z̄) =NR

Nβ∑
β =1

1

Vf

[Sd(ψf,m(φ̄), Z̄(NR))]β, (2.31)

where the summation is over the Nβ computational drops within Vf , and Sd has
the functional form of (2.27) with ψf,m denoting the model for ψf . In (2.31), the
representative nature of each drop is entirely embodied in the parameter NR , which
is constant.

For rendering ψ , we assessed the filtered flow field (‘baseline’ model) as well as a
‘random’ model and a more sophisticated ‘deterministic’ model, the latter two using the
SGS variance σ 2

SGS(ψ) = ψ̃2−(ψ̃)2, which we determined could be modelled in a similar
manner as the SGS fluxes. The assessment of Part 1 was that, for the purpose of
calculating drop source terms, the filtered flow field performed better than the random
model but not as well as the deterministic model of the unfiltered variables. However,
a complex FST-model error behaviour that was dependent on both the filter width
and on NR , as well as the inability of an a priori study to predict the effect of the FSTs
on the flow evolution, showed the need to perform a more cogent assessment of these
models by means of a posteriori studies. In the present study, we use the filtered flow
field in place of the unfiltered flow field in calculating the source terms. This decision
is motivated by the increased complexity of the random and deterministic models
due to the need to model σSGS; future studies may examine whether the additional
complexity of these models leads to improved accuracy in LES. Using the filtered
flow field to represent the unfiltered one amounts to neglecting direct SGS effects on
drop evolution (as done by Boivin et al. 2000 and Yamamoto et al. 2001).
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Therefore, the FST model for the present study is (2.31) with ψf,m = ψ̃f :

S̄(ψ̃f , Z̄) = NR

Nβ∑
β =1

1

Vf

[Sd(ψ̃f , Z̄(NR))]β, (2.32)

and the only parameter is NR . The selection of NR involves an appraisal of the possible
increase in computational efficiency, weighed against a likely loss of accuracy, as NR

is increased. Consistent with this FST model, the computational-drop evolution is
given by (2.1)–(2.4), with ψ replaced by ψ̃ .

2.4. Subgrid-scale-flux models

For compactness of notation, we denote the SGS fluxes for a variable ϕ as

θj (ϕ) = (ϕ̃uj − ϕ̃ũj ) (2.33)

where θj (ui) = τij , θj (YV ) = ηj and θj (h) = ζj . The model for θj (ϕ), to be calculated
on the filtered flow field (φ̄) is denoted µj (ϕ̃; φ̄, �̄) (associated with the filter width
�̄ and with the velocity ũj ); µj does not contain the model coefficient. We define a
generic model coefficient χ ,

θj (ϕ) = χ(ϕ̃; φ̄, �̄)µj (ϕ̃; φ̄, �̄). (2.34)

In the most general case, χ is spatially and temporally varying, and moreover has
different values for each SGS flux to be modelled. Our LES will consider two more
restrictive cases where these χ have the same value for all (or a subset of) SGS fluxes
and (i) are temporally and spatially constant and must be externally specified (in
our case through calibration on a DNS database), or (ii) are temporally varying but
spatially constant in the domain (or on homogeneous planes) and are dynamically
computed as part of the LES solution.

For the SGS fluxes defined in (2.16), we consider here the following three typical
SGS models:

(a) The Smagorinsky (SM) model is (see Smagorinksy 1993)

ϕ = ui : µj (ϕ̃; φ̄, �̄) = µ0
j (ũi; φ̄, �̄) + (χtraceδij /3)µk(ũk; φ̄, �̄), (2.35)

µ0
j (ũi) = −�̄2S(φ̄)S0

ij (φ̄), (2.36)

ϕ = YV , h : µj (ϕ̃; φ̄, �̄) = −�̄2S(φ̄)
1

2

∂ϕ̃

∂xj

, (2.37)

where χµ0
j (ũi) is the model for τ 0

ij , χχtraceµk(ũk) is the model for τkk , the superscript

zero denotes a traceless tensor (e.g. τ 0
ij = τij − (τkk/3)δij , τ 0

kk = 0) and

S2(φ) = Sij (φ)Sij (φ). (2.38)

The consistency conditions on τij are most simply satisfied by having χ and χtrace

take on the same values for all µj (ui). To model τkk , which may be important for
compressible turbulence (Erlebacher et al. 1992), we use the Yoshizawa (1986) (YO)
model:

µk(ũk; φ̄, �̄) = �̄2S2(φ̄). (2.39)

(b) The gradient (GR) model is (Clark, Ferziger & Reynolds 1979)

ϕ = ui, YV , h : µj (ϕ̃; φ̄, �̄) = �̄2 ∂ϕ̃

∂xk

∂ũj

∂xk

. (2.40)
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(c) The scale-similarity (SS) model is (Bardina, Ferziger & Reynolds 1980)

ϕ = ui, YV , h : µj (ϕ̃; φ̄, �̄) = (̂̃ϕũj − ̂̃ϕ̂̃uj ), (2.41)

where the overhat (̂) denotes (unweighted) filtering at the test-filter level �̂ � �̄.

2.4.1. Constant-coefficient models

For the constant-coefficient versions of the Smagorinsky, gradient and scale-
similarity models, denoted SMC, GRC and SSC, all SGS fluxes use the same
coefficient value, that is, in the notation of Part 1: χ = CSM, χχtrace = CYO (SMC);
χ =CGR (GRC); χ = CSS (SSC). The constant coefficient must be externally specified,
either from theoretical considerations, or from calibration with DNS or experiments.
For the GR model, theoretically (i.e. from a Taylor series expansion, see Appendix A
of Part 1) CGR = 1/12 for a cubic top-hat filter. Scale-similarity implies that CSS = 1
for identical grid and test filters (Bardina et al. 1980; Pruett & Adams 2000). However,
practically, its true value depends on the situation under study as well as on the filter
type and on the ratio �̂/�̄ (see Appendix B of Part 1).

One may also construct more general SGS-flux models having a different coefficient
for each type of flux; for example, a four-coefficient model

χ(τij,i = j ) = Cτd, χ(τij,i �=j ) = Cτx, χ(ζj ) =Cζ , χ(ηj ) = Cη, (2.42)

and three-coefficient models

χ(τij ) = Cτ , χ(ζj ) = Cζ , χ(ηj ) = Cη; (2.43)

χ(τij,i = j ) = Cτd, χ(τij,i �=j ) = Cτx, χ(ζj ) = χ(ηj ) = Cζη. (2.44)

2.4.2. Dynamic models

A more sophisticated but more computationally expensive approach than utilizing
constant coefficients is to determine the model coefficients from the LES solution
through dynamic modelling. Basically, dynamic modelling is an application of the
SS concept, in that it attempts to deduce the SGS behaviour from that of the small
resolved scales (SRSs). The essence of the method is to relate the grid-level SGS flux,
θj , and the test-level SGS flux,

Tj (ϕ) = (̂̃ϕuj − ̂̃ϕ̂̃uj ), (2.45)

to the test-level resolved flux, Lj , through the Germano identity (Germano et al.
1991):

Lj (ϕ) ≡ ̂̃ϕũj − ̂̃ϕ̂̃uj = Tj − θ̂j . (2.46)

Since the grid-level SGS-flux model (without coefficient) has been previously defined

as µj (ϕ̃; φ̄, �̄), the test-level SGS-flux model is µj (̂̃ϕ; ̂̄φ, ̂̄�), associated with the filter

width ̂̄� and with the velocity ̂̃uj . Here ̂̄� is the effective filter width, not actually

used for filtering, that corresponds to filtering at �̄ followed by filtering at �̂, and
whose value depends on the filter type. For the top-hat filter used here, it is optimally

approximated by ̂̄�2

= �̄2 + �̂2 (Vreman, Guerts & Kuerten 1997); this value is the

exact one for a Gaussian filter, whereas ̂̄�= �̂ for a spectral cut-off filter. Then Lj

can be modelled as

Mj (ϕ) = µj (̂̃ϕ) − µ̂j (ϕ̃). (2.47)
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The model coefficient can be extracted using a least-squares fit (Lilly 1992),

CH (ϕ) =
〈Lj (ϕ)Mj (ϕ)〉
〈Mk(ϕ)Mk(ϕ)〉 , CD(ϕ) =

〈〈Lj (ϕ)Mj (ϕ)〉〉
〈〈Mk(ϕ)Mk(ϕ)〉〉 , (2.48)

where, for the present mixing layer configuration, 〈〉 denotes averaging over homogene-
ous (x1, x3)-planes while 〈〈〉〉 denotes averaging over the entire domain. Using the
multi-coefficient formulation (2.42), the summation over repeated indices would be
over three quantities for the SGS-stress diagonal terms, over three quantities for the
SGS-stress off-diagonal terms, over three quantities for the SGS species flux and over
three quantities for the SGS enthalpy flux. (The use of dimensional variables in the
present formulation necessitates the separate computation of the coefficient for each
type of SGS flux.) The dynamic coefficients to replace the constant coefficients are
computed using:

(a) for the dynamic Smagorinsky (SMD) model, µj from (2.35)–(2.39);
(b) for the dynamic gradient (GRD) model, µj from (2.40).
Further details on the implementation of the dynamic models are provided in § 3.2.2

below. In view of the observation in Part 1 that the scale-similarity and gradient models
have much better correlations with the SGS fluxes than does the Smagorinsky model,
we do not consider ‘mixed’ models, in which the (dynamic) Smagorinsky model is
used to add dissipation to the other two models (thus our dynamic gradient model
differs from that of Vreman et al. 1997).

3. LES methodology
The LES results are to be compared to the filtered-and-coarsened (FC) DNS,

filtered at the desired width �̄ and then coarsened so that only the DNS grid points
corresponding to the LES grid are used. For TP cases, FC-DNS also means that
a subset of the DNS physical drops are extracted, to create a reduced drop field
using the same NR as the LES. Although the goal of TP LES is to reproduce the
physical flow and drop fields (represented here by DNS), the formal comparison of
the LES should be made to FC-DNS, which represents the best possible result for
the flow-field resolution and the number of computational drops selected for the
LES. The determination of whether the LES resolution is adequate for the physical
problem should be considered separately using grid-resolution studies for the flow
field and/or different NR values for the drop field; in the general situation where
direct comparison with the physical problem is not possible, the LES with different
grids and/or NR values might be compared to one another to obtain a grid- and/or
NR-converged solution.

The LES initial condition is the FC-DNS initial condition. Generally, when an initial
DNS flow field is unavailable, an initial LES condition has to be carefully calculated
on a coarser grid in order to avoid poor accuracy or numerical instabilities. The
LES are performed using the same numerical scheme as the DNS, namely fourth-
order explicit time integration and eighth-order central finite-differences (Kennedy
& Carpenter 1994) with fourth-order interpolation of gas-phase variables from grid
points to drop locations. The flow configuration and initial conditions are summarized
below; further details can be found in Part 1.

3.1. Flow configuration and initial conditions

The mixing-layer geometric configuration is illustrated in figure 1, where the stream-
wise (x1), the cross-stream (x2), and the spanwise (x3) coordinates are shown, and
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–U0
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Figure 1. Mixing-layer configuration.

the respective domain lengths are L1, L2 and L3. Periodic boundary conditions
are used in the x1- and x3-directions, and adiabatic slip wall conditions (see
Poinsot & Lele 1992) are employed for the x2 boundaries. Initially, the gas phase
consists only of the carrier gas (no vapour). To promote layer growth, the layer
is initially perturbed so as to induce roll-up and pairing. The evolution of the layer
comprises two pairings of the four initial spanwise vortices to form a single vortex.
The initial (subscript 0) free-stream velocity, U0 = Mc,0aC,0, is calculated from a speci-
fied value of the convective Mach number (Mc,0) based on the carrier gas initial
speed of sound (aC,0). The initial vorticity thickness is δω,0 = δω(0) where δω(t) = �U0/

(∂〈u1〉/∂x2)max, with �U0 = 2U0 being the velocity difference across the layer; initially,
〈u1〉 has an error-function profile. The specified value of the initial Reynolds number,
Re0 = ρ0�U0δω,0/µ, where ρ0 is the initial gas density, is used to calculate µ. The
thermal conductivity and diffusivity are then computed using this value of µ and
(constant) specified values of Prandtl and Schmidt numbers ( Pr = Sc = 0.67). All
thermophysical properties are the same as those employed in the simulations of
Miller & Bellan (2000) using air as the carrier gas and decane as the drop liquid. For
TP flow, the drops are initially distributed randomly throughout the x2 < 0 domain.
All the drops have the same initial temperature, Td,0, set lower than the initial carrier-
gas temperature, TC,0, to promote evaporation. Initially the drops have the same
velocity as the gas phase at their location. The initial drop size is specified through
the initial Stokes number St0 where St = τd�U0/δω,0. The initial number of physical
drops Nd,0 is determined by the initial mass loading ML0 (initial ratio of liquid mass
to mass of carrier gas in the drop-laden part of the domain). As drops heat up and
evaporate, their size decreases; drops smaller than a certain mass (corresponding to
a Stokes number of 0.1) are removed from the domain because of their negligible
dynamic and thermodynamic impact on the flow.

The DNS cases considered here are listed in table 1. All cases have Re0 = 600,
which is the higher Reynolds number simulated in Part 1. These cases comprise
SP600 (ML0 = 0) and TP600a2 (ML0 = 0.2), which are the two simulations that were
analysed on an a priori basis in Part 1, and TP600a5 (ML0 = 0.5) for which application
of our models represents an additional test; that is, we study the applicability of
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δm/δω,0 Rem CPU-hours
Run Re0 ML0 Nd,0 t∗

p1 t∗
p2 t∗

peak t∗
trans at t∗

trans at t∗
trans (estimated)

SP600 600 0 0 45 75 100 100 2.485 1491 1054
TP600a2 600 0.2 2993630 45 80 105 105 2.627 1576 2252
TP600a5 600 0.5 7484075 45 80 105 105 2.613 1568 2981

t∗
p1 and t∗

p2: first and second pairing times; t∗
peak: momentum-thickness peak after second pairing;

t∗
trans: transition time; (t∗

p1, t∗
p2, t∗

peak and t∗
trans are rounded to the nearest t∗ ≡ t�U0/δω,0 divisible

by 5).
For all cases: Mc,0 = 0.35, TC,0 = 375 K, ρ0 = 0.9415 kg m−3, �U0 = 271.69 m s−1, δω,0 = 6.859 ×
10−3 m, L1 = 0.2m, L2 = 0.22 m, L3 = 0.12 m, N1 = 288, N2 = 320, N3 = 176. Ni is the number of
grid points in the xi direction.
For drop laden cases: Td,0 = 345K, ρL = 642 kgm−3, TB,L = 447.7K, St0 has Gaussian distribution
with mean 3, standard deviation 0.5.
CPU-hours: aggregate over parallel processors on SGI Origin 2000.

Table 1. Summary of DNS database.

models derived from the DNS of SP600 and TP600a2 to LES of these two cases and
to LES at a higher value of ML0. The layer growth is measured using the momentum
thickness, δm, calculated as

δm =

∫ x2,max

x2,min

[
〈ρu1〉x2,max

− 〈ρu1〉
][

〈ρu1〉 − 〈ρu1〉x2,min

]
dx2(

〈ρu1〉x2,max
− 〈ρu1〉x2,min

)2
(3.1)

where x2,max = L2/2 and x2,min = −L2/2 are the slip wall coordinates. In the DNS, the
time at which transition was attained, t∗

trans, listed in table 1, was determined to be
the same as t∗

peak, the time of the peak in δm after the second pairing, provided that
the layer displayed transitional aspects. In particular, the velocity-fluctuation-based
spectra displayed a smooth aspect at that time (see Part 1), which indicated that
transition was indeed achieved. Also, the momentum-thickness Reynolds number,
Rem = ρ0�U0δm/µ, listed in table 1 is about 1500 at t∗

trans, above that typical of the
laminar regime.

We use an LES grid coarser than the DNS grid, with �xLES = 4�xDNS, where
�xDNS = max(�x1, �x2, �x3) on the DNS grid, and set �̄= 2�xLES. This is the
larger of the two filter widths (�̄ =4�xDNS and �̄= 8�xDNS) that were analysed in
Part 1. The grid coarsening selected was the maximum possible for this grid while
ensuring that the high-order (12-point) boundary stencils did not include points from
within the mixing region. The choice �̄= 2�xLES allows us to use the scale-similarity
model with �̂= �̄, since it permits more than one grid point in the filtering volume.
Note that each drop will be in several filtering volumes, since the filtering volumes
associated with adjacent grid points will overlap. This is not an inconsistency, as
it is accounted for in the rigorously developed methodology, in which each drop’s
contribution to the filtered flow field is averaged over the filtering volume. Therefore
the contributions of a given drop to all the filtering volumes in which it resides are
consistently accounted for. The type of LES filter, in this case a cubic top-hat filter,
explicitly appears in

(a) computing the initial condition,
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Smagorinsky model Gradient model

SP600 TP600a2 TP600a5 Ave. SP600 TP600a2 TP600a5 Ave.

Cτ 0.0420 0.0430 0.0443 0.0431 Cτd 0.1690 0.1763 0.1748 0.1734
Cτx 0.1330 0.1353 0.1347 0.1343

Cζ 0.0747 0.1236 0.1227 0.1070 Cζ 0.1339 0.1329 0.1319 0.1329
Cη – 0.1274 0.1228 0.1251 Cη – 0.1332 0.1312 0.1322

Table 2. Average slopes for multi-coefficient calibration of the constant-coefficient
Smagorinsky and gradient models. Slope (exact/model) from least-squares fit of SGS flux
to SGS-flux model. Calculations performed on DNS databases at t∗

trans listed in table 1 using
�̄ = 8�xDNS.

(b) computing the SGS quantities (if the SSC or a dynamic SGS model is used),
and

(c) computing the FSTs.

3.2. SGS-flux model implementation

3.2.1. Constant-coefficient models

The constant-coefficient SGS-flux models (SMC, GRC and SSC) were implemented
as discussed in § 2.4.1, using coefficient values of

CSM = 0.072, CYO = 0.314; CGR = 0.152;

CSS = 1.996 for �̂= �̄, CSS = 0.808 for �̂= 2�̄.

}
(3.2)

These coefficients were calibrated in Part 1 using transitional states for DNS cases
SP600 and TP600a2, and were found to be statistically equivalent for SP600 and
TP600a2. Notably, the GRC and SSC models showed excellent correlations (over
90%) with the SGS fluxes, while the SMC model had poor correlations (about 30%).

The multi-coefficient calibration for the Smagorinsky and gradient models is
presented in table 2 for �̄= 8�xDNS (results for �̄= 4�xDNS were similar), where
for the Smagorinsky model we use (2.43) while for the gradient model we use (2.42).
(Multi-coefficient models were not considered for the scale-similarity model since the
single-coefficient model was robust.) For the Smagorinsky model, Cτ is less than the
calibrated single-coefficient value of 0.072, while the other two coefficients Cζ and Cη

are greater. For the gradient model, Cτd is greater than the single coefficient value of
0.152, while the other three coefficients are smaller.

Although the (single and multiple) constant-coefficient models were adequate for
SP600 LES, they were not consistently numerically stable for TP600a2 and TP600a5
LES; therefore only the single-coefficient results will be presented. Furthermore, the
SSC model with �̂ =2�̄ was numerically unstable, therefore only the SSC model with
�̂ = �̄ was used. (Numerical instability was manifested by the code crashing shortly
before the transition time listed in table 1.)

3.2.2. Dynamic models

For the dynamic models conceptualized in § 2.4.2, after some experimentation we
settled on a three-coefficient SMD model (2.43) and a four-coefficient GRD model
(2.42), with domain averaging for the SGS stress, domain or homogeneous-plane
averaging for the SGS enthalpy flux (respectively for the SMD or GRD model) and
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Figure 2. Evolution of the dynamic coefficients in SMD LES (left) and GRD LES (right)
for (a, b) SP600 (Cη = 0), (c, d) TP600a2 with NR =8 and (e, f ) TP600a5 with NR = 8.

homogeneous-plane averaging for the SGS species flux (2.48), as these averagings
were consistently stable for SP and TP flows. All the dynamic models use �̂= 2�̄.
Figure 2 presents the domain-average of the SMD and GRD model coefficients for
SP600 LES, and for TP600a2 and TP600a5 LES with NR =8. For SP600, inherently
Cη = 0 (YV is null). For the SMD model, at the DNS transition times (t∗ = 100 for SP,
t∗ = 105 for TP; see table 1), the average value of the (non-null) coefficients is 0.052,
0.059 and 0.064 for SP600, TP600a2 and TP600a5 respectively, slightly lower than the
single-coefficient value of 0.072, which was calibrated at the DNS transition times.
As on the DNS database at the DNS transition times, the Cτ value is lower than the
average, while the other two coefficient values are above the average (see table 2). For
the GRD model, the dynamic coefficients vary dramatically between the first and the
second pairing times (for example, in figure 2d , Cτx decreases from 0.2 to 0.07 between
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t∗ =25 and t∗ = 70), but have less variation after the second pairing. For SP600, the
average value at t∗ =100 of the (non-null) coefficients is 0.1441. Furthermore, for
both TP600a2 and TP600a5, even though at t∗ = 105 the four coefficients range in
value from 0.1316 to 0.1748, their average value (0.1559 for TP600a2 and 0.1558
for TP600a5) is close to the calibrated value of 0.1520, which was obtained on the
DNS database at the transitional time. The indications are that one limitation of the
SMC and GRC constant coefficients is that they were calibrated at the transition
time, whereas they change during the layer evolution. Hence dynamic modelling is
necessary to capture the temporal variation of the model coefficients.

Figures 2(d) and 2(f ) suggest that a three-coefficient dynamic gradient model (2.44)
for TP flows may be viable, since 〈〈Cη〉〉 � 〈〈Cζ 〉〉. We devised such a model, denoted
GRD3, where Cη was set equal to the dynamically computed Cζ . The GRD3 model
was found to yield results very close to those of the GRD model, therefore only the
GRD model results will be shown. The good agreement between the GRD and GRD3
results is most likely a consequence of the correlation between enthalpy and mass
fraction occurring in the present simulations and might not have general validity. The
h-to-YV correlation is due mainly to two factors: first, (2.18) relates the enthalpy to
the mass fractions and (2.21) relates the heat flux to the species mass flux; second,
in the present simulations, in (2.21) the transport of energy by the species mass
fluxes dominates the heat flux contribution due to the small temperature gradient (see
Part 1). With regard to computational performance, the CPU time of the GRD and
GRD3 is similar.

The implementation of the SGS-flux models described above considered only the
numerical stability of the LES; the accuracy of LES results as compared to DNS is
addressed in § 5 and § 6.

3.3. Comparison to DNS results

The LES described herein are compared in the following to the DNS results described
in detail in Part 1; the DNS cases being considered here are listed in table 1. It should
be noted that, although we are primarily interested in the transitional state, by com-
paring the LES and DNS flow fields at the same physical time, we are also comparing
the evolution of the layer by requiring that the layers should evolve to approximately
the same transitional state in approximately the same time. We are thereby requiring
both temporal equivalence (i.e. the LES transitions at the same time as the DNS)
and spatial equivalence (i.e. the LES transitional state be comparable to the DNS
state). This is a more rigorous requirement than in spatial flow configurations starting
from a turbulent initial condition in LES, where only spatial statistical equivalence is
desired.

Comparisons between the filtered DNS database and the LES a posteriori results are
performed by calculating the slope b and the correlation factor R using a least-squares
fit of Y = bX,

b =
〈〈XY〉〉
〈〈XX〉〉 , R(X, Y) =

〈〈XY〉〉 − 〈〈X〉〉〈〈Y〉〉√
〈〈X2〉〉 − 〈〈X〉〉2

√
〈〈Y2〉〉 − 〈〈Y〉〉2

, (3.3)

with Y being the FC-DNS quantity and X being the LES quantity, defined at the
same grid points. For convenience, the tilde and overbar indicating filtered quantities
are hereafter omitted. For gas-phase quantities, DNS refers to unfiltered variables
whereas FC-DNS and LES refer to filtered variables.
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Slopes Correlations

ψ̃f ψ̃f ψ̃f ψ̃f

ψf (�̄ = 4�x) (�̄ = 8�x) ψf (�̄ = 4�x) (�̄ = 8�x)

SI,d 0.88 0.92 0.96 SI,d 0.96 0.98 0.99
SII,1,d 0.57 0.71 0.84 SII,1,d 0.76 0.88 0.95
SII,2,d 0.52 0.70 0.87 SII,2,d 0.67 0.83 0.93
SII,3,d 0.39 0.54 0.73 SII,3,d 0.59 0.75 0.86
SIII,d 0.83 0.87 0.90 SIII,d 0.93 0.95 0.96

Table 3. A priori analysis of interpolation error in drop source terms Sd : TP600a2 at t∗ = 105.
Slopes (DNS-grid/LES-grid) and correlations from least-squares fits on all physical drops.
DNS-grid (LES-grid) Sd uses ψf or ψ̃f obtained by interpolating ψ or ψ̃ on DNS (LES) grid;
ψ̃ results from filtering ψ on DNS grid using filter width �̄. �x denotes DNS grid spacing,
LES grid spacing is 4�x.

4. A priori analysis of interpolation error in the filtered source terms
In the a priori analysis of Part 1, all modelling was performed on the DNS (fine)

grid. The flow field is calculated only at the grid points, and must be interpolated to
the drop locations in order to provide the far-field conditions ψf needed to compute
the drop source terms (Sd) through (2.27). Foreseeing computations on the LES grid,
Part 1 included an assessment of the error in computing Sd when the unfiltered
variables (ψ) are replaced by the filtered variables (ψ̃), and of the resulting errors
in the FSTs (S̄) which are calculated from Sd through (2.31). Given that the LES
grid is coarser than the DNS grid, it is appropriate to inquire what further effect the
grid coarsening will have on Sd and on S̄. To this end, we here calculate Sd and S̄

using either ψf or ψ̃f interpolated on the coarser LES grid, denoted ψf,LES or ψ̃f,LES.

The calculation with ψf,LES contains only interpolation errors, while that with ψ̃f,LES

additionally contains errors in the drop far field (lack of SGSs). Therefore, to isolate
interpolation errors, the ψ̃f,LES calculation is compared to DNS-grid calculations with
ψ̃f,DNS; that is, ψ̃ is first obtained on the DNS grid, and then ψ̃f,LES and ψ̃f,DNS

are obtained from interpolation on the LES and DNS grids, respectively. In table 3
is presented the comparison of DNS-grid and LES-grid Sd using least-squares-fit
slopes and correlations ((3.3) applied at drop locations). All the slopes are less than
unity, meaning that Sd is over-predicted. As observed in Part 1, SII,3,d is the worst
predicted, due to u3 having the smallest magnitude of the three velocity components.
The interpolation error (deviation of slope and correlation from unity) is seen to be
largest for Sd based on the unfiltered variables and smallest for Sd based on filtered
variables at the larger filter width. The explanation of the error decrease as the filter
width increases is that filtering smooths the flow, thereby reducing the gradients and
hence the interpolation errors. The error in SII,3,d of about 27% at �̄= 8�xDNS, which
is the filter width to be used for the LES in the present study, is somewhat lower than
the error in modelling ψf by ψ̃f (see Part 1).

Combining the interpolation and computational-drop-modelling error, in figure 3
we compare S̄(ψ̃f , NR) for various values of NR on the LES grid to NR = 1 on the
DNS grid; S̄ on the DNS grid uses the physical drops whereas S̄ on the LES grid
uses computational drops. Similar to Sd , S̄ is over-predicted, the prediction of S̄ is
better at the larger filter width and S̄II,3 is the worst predicted component. S̄ shows
a clear degradation of accuracy with increasing NR , although the degradation is not
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Figure 3. A priori analysis of interpolation error in S̄: TP600a2 at t∗ = 105. Slopes (DNS-grid/
LES-grid) from least-squares fits at LES grid points. DNS-grid (LES-grid) S̄ uses ψ̃f obtained

by interpolating ψ̃ on DNS (LES) grid and NR = 1 (NR � 1); ψ̃ results from filtering ψ on
DNS grid using filter width �̄. (a) �̄ = 4�xDNS and (b) �̄ =8�xDNS.

δm/δω,0 δm/δω,0

SGS model at t∗
trans t∗

peak at t∗
peak CPU-hours

SMC Smagorinsky, constant coefficient 2.480 95 2.489 3.0

SMD Smagorinsky, dynamic coefficient (�̂ = 2�̄) 2.390 90 2.498 4.5
GRC Gradient, constant coefficient 2.486 95 2.543 3.1

GRD Gradient, dynamic coefficient (�̂ = 2�̄) 2.146 90 2.298 4.2

SSC Scale-similarity, constant coefficient (�̂ = �̄) 2.279 95 2.323 5.9

Table 4. LES runs corresponding to DNS case SP600. For all cases, grid is 72 × 80 × 44; see
table 1 for other initial conditions. DNS transition time t∗

trans = 100. Coefficient values for SGS
models: CSM = 0.072, CYO = 0.314 (SMC); CGR = 0.15 (GRC); CSS = 1.996 (SSC). CPU-hours:
aggregate over parallel processors on SGI Origin2000.

as severe at the larger filter width. This behaviour was also observed in Part 1, in the
a priori FST modelling on the DNS grid, and was there attributed to the complex
interaction, as the filter width is increased, between the reduction in the accuracy
with which the unfiltered flow field is represented and the increase in accuracy due
to the larger number of drops contained in the filtering volumes. It is not possible
to quantify a priori how the decrease in accuracy with increasing NR will affect the
LES; such an evaluation will be made in § 6.

5. Single-phase-flow LES results
The usefulness of the single-phase case is to develop candidate SGS-flux models

for TP flows, since, within statistical significance, these models were found to perform
similarly in a priori studies on the SP600 and TP600a2 DNS databases. Compared
to TP LES, SP LES has reduced computational costs and does not require FST
modelling. SP LES were here performed with the constant-coefficient and dynamic
SGS-flux models listed in table 4, which also lists the CPU time. Compared to the
DNS (table 1), the LES takes a factor of 179 to 351 less time. This reduction is less
than the factor of 512 that would result from the grid coarsening (and associated
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Figure 4. Time evolution of non-dimensional global quantities for SP600: (a) momentum
thickness, (b) resolved kinetic energy, (c) average positive spanwise vorticity and (d) average
enstrophy. DNS; FC-DNS; LES listed in table 4. E0 = 1392.2 J is the initial total energy in
the domain.

increase in time step) alone, the larger CPU time being due to the overhead of
computing the SGS-flux models. The SMC and GRC models, which use already
available gradients, are the least expensive, while the SSC model, which involves re-
filtering, is the most expensive. The GRD and SMD models also require re-filtering,
but are faster than the SSC model, despite utilizing a larger test-filter width, since
they only require refiltering once per time step (in computing the coefficients at the
beginning of each time step), whereas the SSC model requires refiltering four times
per time step (at each stage of the time-integration). The performance of the different
models as it pertains to the quality of the LES is discussed below.

5.1. Evolution of the global quantities

Since the goal of the present LES is to replicate the DNS results, plotted in figure 4 is
the temporal evolution of various global quantities from LES using the five different
SGS-flux models listed in table 4; these results are to be compared to the DNS and
FC-DNS results. In considering the momentum thickness δm (3.1) in figure 4(a), we
observe that all layers show sustained growth until approximately the time of the
second pairing, after which δm diminishes. (The DNS and FC-DNS curves overlap.)
However, the SMC model has an initially reduced rate of growth compared to all
the other models, which show good agreement with the FC-DNS results. When the
entire evolution is considered, the best agreement comes from the GRC model; the
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GRD model agrees with the GRC model in the early stages of the layer evolution.
The values of δm at the DNS transition time t∗

trans = 100 are listed in table 4, which
shows the GRC and SMC model δm predictions to be within 0.2% of the DNS value
of 2.485. The other models are not as accurate in predicting δm, being 4% (SMD)
to 14% (GRD) too low. For all SGS-flux models, the time of the peak in δm after
the second pairing, t∗

peak, also listed in table 4, occurs sooner for LES than for DNS
and has a smaller δm. The best peak δm prediction comes from the SMC model, while
the worst is that of the GRD model which has an error of 7% in δm. For the DNS,
consideration of an ensemble of criteria is required to determine whether transition
has been attained at any particular time (see § 3.1), whereas no such criteria exist for
LES. In this study, comparisons of the LES to the FC-DNS will be made at the DNS
transition time, t∗

trans in table 1, and, based on the flow characteristics, an assessment
will be made of whether the LES has achieved transition at that time.

Depicted in figure 4(b) is the resolved kinetic energy EkG =
∫

domain
ρ(uiui/2) dV .

Notably, the kinetic energy represents a small fraction (between 3% and 4%) of the
total energy in the system E0. Here, the difference between the DNS and FC-DNS
represents the SGS kinetic energy τii/2, and it is seen that, even at the transition time,
the SGS kinetic energy is a small fraction of the resolved kinetic energy (although
a larger portion, about 14%, of the turbulent kinetic energy resides in the SGS).
Nevertheless, SGS-flux models were found to be necessary in order to compute flows
on the LES grids (the code with no SGS model crashed), this being evidence that the
high accuracy of the numerical method does not allow under-resolved computations.
The EkG plot shows that the initial rate of decay for the SMC model is greater
than that for the other models, indicating that the SMC model is here the most
dissipative. However, whereas the other models begin at rollup (t∗ ∼ 20) a period
of increased decay rate, as does the FC-DNS, this period is delayed for the SMC
model until t∗ ∼ 60, and this model retains the largest EkG, indicating that it lacks the
small resolved scales (SRSs) that would be responsible for turbulent dissipation. The
SSC model shows the largest overall kinetic energy loss. We note that although all
SGS models show global energy dissipation, the Smagorinsky model by construction
guarantees positive local dissipation (τij ∂ũi/∂xj > 0 for χ > 0, see figure 2); the
gradient and scale-similarity models inherently allow for local backscatter.

Depicted in figures 4(c) and 4(d) are two vorticity measures for the resolved fields:
the positive spanwise vorticity 〈〈ω+

3 〉〉, which measures the SRS activity since the initial
ω3 is negative; and the enstrophy 〈〈ωiωi〉〉, which measures stretching and tilting, an
important mechanism for turbulence production. For both measures, the FC-DNS
value is as small as one-third to one-fourth of the DNS value, due to the removal
of SGSs by the filtering operation. The FC-DNS curves qualitatively mimic the DNS
ones, in growing after rollup (t∗ ∼ 20), reaching a peak at approximately the time of the
second pairing (t∗ ∼ 80) and then decaying. In examining the LES results, we note that
for both SMC and SMD models, there is little activity, in agreement with the initially
overly dissipative aspect seen in figure 4(b), whereas the other models qualitatively
and sometimes quantitatively match the FC-DNS results. The best agreement comes
from the GRD model, with the GRC model also performing well. The SSC model
performs comparably to the GRC and GRD models in the early part of the layer
evolution, but has earlier and greater vorticity decay, in agreement with the results of
figure 4(b).

The performance of the SGS-flux models is further assessed at the DNS transitional
time by examining contour plots, energy spectra, homogeneous-plane statistics and
global flowfield correlations.
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Figure 5. Spanwise vorticity (non-dimensional) for SP600 at t∗ = 100, in the between-the-braid
plane (x3/L3 = 0.5): (a) FC-DNS and (b–f ) LES using (b) SSC, (c) SMC, (d) SMD, (e) GRC
and (f ) GRD SGS-flux model. Dashed lines are used for negative values. Contour levels range
from −0.579 to 0.524 in increments of 0.0788 (15 levels).

5.2. Flow visualizations

To complement the global vorticity measures plotted in figure 4, in figures 5 and 6
are contour plots of the spanwise and streamwise vorticity, ω3 and ω1, respectively, at
t∗ = 100. In comparing the FC-DNS and LES results, clearly the SMC and SMD LES
are almost entirely devoid of SRSs, although both display the largest scale ultimate
spanwise vortex in figure 5. This explains figure 4 which showed the good growth
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Figure 6. Streamwise vorticity (non-dimensional) for SP600 at t∗ = 100, in the mid-plane
(x1/L1 = 0.5): (a) FC-DNS and (b–f ) LES using (b) SSC, (c) SMC, (d) SMD, (e) GRC and
(f ) GRD SGS-flux model. Contour levels range from −0.631 to 0.436 in increments of 0.076
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of these layers (due to entrainment and manifested by the largest scale vortices),
but minimal positive spanwise vorticity and enstrophy generation. In considering ω1

in figure 6, both the SMC and SMD models show only spanwise structures with a
wavelength that is one-fourth of the domain length. These structures are in fact those
initially imposed, and no SRS structures have emerged. On the other hand, the SSC,
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Figure 7. Energy spectra of u1 for SP600 at t∗ = 100: (a) streamwise and (b) spanwise.
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GRC and GRD models lead to ω3 and ω1 flow fields that look quite similar to the
FC-DNS. In contrast to the SMC and SMD LES, the other models show little or no
memory of the initial conditions in ω1, and exhibit a variety of structure sizes. The
lack of SRSs for the SMC and SMD LES leads to questioning whether a transitional
state was truly achieved at the DNS transitional time. This issue can be clarified by
examining the energy spectra.

5.3. One-dimensional spectra of velocity components

Figure 7 displays one-dimensional streamwise and spanwise energy spectra, which
show the energy content of each wavenumber (k) in the flow; the u1 spectra depicted
in figure 7 are similar to those for u2 and u3. With respect to the DNS, the FC-DNS
is seen to be an excellent approximation at the largest scales, but at smaller scales
it increasingly departs from the DNS and exhibits an accumulation of energy at
the SRS, these aspects being a manifestation of the filtering. Comparing the LES
spectra to those of the FC-DNS, the gradient-model spectra are closest, followed
by the SSC-model spectra. For the streamwise spectra, the SSC, GRC and GRD
models exhibit a smooth aspect and closely follow the FC-DNS; they display smaller
amounts of energy than the FC-DNS at the largest wavenumber due to the effect
of the SGS models. The SMC and SMD streamwise spectra exhibit small peaks and
display smaller amounts of energy than the FC-DNS with increasing k, while around
and past the filter cut-off, the amount of energy is orders of magnitude smaller than
for the FC-DNS. For the spanwise spectra, the SMC and SMD models show sharp
peaks, corresponding to structures in the spanwise direction (see figure 6) which
persist past the initial perturbation. These peaks are not observed for the DNS, the
FC-DNS and the GRD models; for the GRC and SSC models, these peaks are much
smaller and only occur at k = 8. (All spanwise spectra, including the DNS, have a
peak at k = 4 corresponding to the spanwise forcing.) Additionally, it is apparent that
for the SMC and SMD models even the energy at the largest scale does not duplicate
that of the FC-DNS, being smaller by more than an order of magnitude. Therefore,
the Smagorinsky model, while permitting pairing of the initial spanwise vortices and
growth of the layer, has actually not reached transition to turbulence. Furthermore,
dynamic modelling does not lead to noticeable improvement in the spectra yielded
by the Smagorinsky model. The information in figures 4–7 is entirely consistent in
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that it is evident that the Smagorinsky model is incapable of reproducing transition,
in contrast to the attainment of transition by the gradient and SSC models.

It should be noted that the present test of the Smagorinsky model is stringent but
appropriate in that it involves only considerations of the flow in the absence of solid-
wall boundary conditions and initially prescribed turbulence. In most engineering
applications where the Smagorinsky (or the similar Prandtl mixing length) model
is used and a flow with seemingly turbulent features is created, the simulations
are performed in configurations where solid walls are present or turbulent initial
conditions are prescribed. Boundary conditions at solid walls will create vorticity
which, when transported to the core of the flow, will act as a surrogate turbulence.
However, the present evaluations of the Smagorinsky model show that, in the absence
of walls, such surrogate turbulence features are not produced. Therefore, results
from existing engineering simulations may be seriously misleading regarding the LES
potential of the Smagorinsky model.

5.4. Homogeneous-plane gas-phase statistics

Next, the LES are compared from the standpoint of statistics computed on homo-
geneous (x1, x3)-planes. Figure 8 shows the planar averages and the fluctuations
relative to the planar averages, for the velocity components and for T ; similar results
were calculated for ρ and p but are not shown. The DNS and FC-DNS results
overlap for the velocity averages and the T fluctuations, and are close for the u1

and u2 fluctuations, indicating that planar quantities are generally insensitive to the
existence of SRS structures. This indication is further borne out by comparison of
the LES velocity planar quantities, which do not reveal the qualitative differences
among the models that were observed in the contour plots in figure 5. In fact, on
a planar basis, the SMD and SMC models perform as well as or better than the
other models in predicting the velocity components, despite their clear deficiencies in
predicting global rotational aspects of the flow (see figures 4c and 4d). All models
give comparably good predictions for the u1 averages. Differences among the models
are more apparent in the averages of u2 and u3. For the u2 average, the SMC model
is the best, although exhibiting some oscillations, while the SSC model is qualitatively
incorrect; for the u3 average, the GRC model is obviously the worst, but the other
models perform similarly to one another. All models under-predict the fluctuations of
u3, which, since it has the smallest magnitude of the three velocity components, is the
most difficult to predict; here the GRD model performs best, followed by the GRC
and SSC models, although none of the models captures the location of both peaks on
the two sides of the centreline. For the fluctuations of u1 and u2, the GRC and GRD
models are similar, and generally outperform the SMD model, which in turn is better
than the SMC model; the SSC model result lies between the GRD and SMD values.

Considering the temperature in figure 8, the models predict a small range of varia-
tion in the average (less than 2%); however, except for the SMD model, which has
minimal variation across the layer, each range is larger than that of the DNS and the
FC-DNS. The GRD has the best T average, while the SMD has the best fluctuations;
the SMC is the worst in both respects. The constant-coefficient versions, SMC and
GRC, give qualitatively incorrect results for the T average; the GRC model, while an
improvement over the SMC model, still has a dip in the temperature in the middle
of the domain which is not present in the DNS or FC-DNS. The SSC model tends
to over-predict the centreline average of T , but does quite well in predicting the
fluctuations. Both the GRC and GRD models over-predict the fluctuations in T ,
although not as severely as does the SMC model. The models perform similarly in
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Slopes Correlations

SMC SMD GRC GRD SSC SMC SMD GRC GRD SSC

u1 0.97 0.96 0.98 0.96 0.97 u1 0.99 0.98 0.99 0.99 0.98
u2 0.58 0.69 0.74 0.89 0.94 u2 0.89 0.78 0.85 0.84 0.82
u3 0.11 0.14 0.03 0.07 −0.02 u3 0.07 0.08 0.03 0.06 −0.01
ρ 1.00 1.00 1.00 1.00 1.00 ρ 0.98 0.97 0.97 0.96 0.98
T 1.00 1.00 1.00 1.00 1.00 T 0.82 0.86 0.88 0.91 0.88
p 1.00 1.00 1.00 1.00 1.00 p 0.99 0.98 0.98 0.97 0.98
ω1 0.15 0.16 0.03 0.09 −0.06 ω1 0.12 0.16 0.04 0.09 −0.04
ω2 0.27 0.21 0.07 0.15 −0.07 ω2 0.18 0.19 0.06 0.12 −0.05
ω3 0.64 0.59 0.42 0.38 0.49 ω3 0.42 0.40 0.35 0.32 0.34

Table 5. Slopes (exact/model) and correlations from least-squares fit of FC-DNS to LES
flow-field quantities for LES runs listed in table 4: SP600 at t∗ = 100.

predicting the ρ and p fluctuations as they do in predicting the T fluctuations, but
predict the ρ and p averages better than they predict the T averages. The SMD gives
the best predictions for both the averages and fluctuations of ρ and of p. All of the
constant-coefficient models (SMC, GRC, SSC) show some deficiency in calculating at
least one plane-average quantity, indicating that dynamic models may ultimately be
necessary.

5.5. Flow-field correlations

To perform a more quantitative comparison of the LES results, these were correlated
with the FC-DNS using (3.3); the results are summarized in table 5. These correlations
are meant to mimic an equivalent comparison of LES with possible experimental data,
which is here portrayed by the FC-DNS. Of the velocity components, the streamwise
velocity u1 has the best slopes and correlations (closest to unity) while the spanwise
velocity u3 has the worst, consistent with the planar results (figures 8e and 8f ).
The T slopes are unity for all models, and the correlations are high, even for the
SMC model, despite its poor planar averages (figure 8g). For all models, the vorticity
components are not as well-correlated to the FC-DNS as the velocity components,
which is expected since these derivative quantities are more sensitive to errors. The
SMC and SMD models appear to give the best slopes and correlations for the vorticity
components, in contradiction to the observations in figures 5 and 6, indicating that
correlations may not be a reliable diagnostic of the detailed structure of the flow,
which is of ultimate interest if mixing is studied. The larger vorticity correlations for
the SMC and SMD models are attributed to the persistence of the initial conditions
(see figure 7) that allow a stronger coherent vortex while the SRS formation is
much reduced (figure 4c). Thus, comparisons of experiments and simulations, for the
purpose of model validation, must be made from a different viewpoint than that of
global correlations.

5.6. Summary of SP LES results

The SP600 LES have afforded the opportunity to study the SGS-flux models indepen-
dently of drop-related effects. Also, they allowed the testing of the DNS-calibrated
coefficients obtained in the a priori study of Part 1. It was found that the a priori study
led on one hand to overly optimistic conclusions, in that the calibrated coefficients
were not consistently numerically stable (e.g. the SSC model with �̂= 2�̄). On the
other hand, the gradient and scale-similarity models that were found accurate in the
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δm/δω,0 δm/δω,0

SGS model NR Ncd,0 at t∗
trans t∗

peak at t∗
peak CPU-hours

SMD 1 2993630 2.227 95 2.389 100
SMD 8 374203 2.223 95 2.387 20
SMD 16 187101 2.226 95 2.389 12
SMD 32 93550 2.224 95 2.385 10
SMD 64 46775 2.225 95 2.385 8
GRD 1 2993630 2.084 100 2.168 113
GRD 8 374203 2.102 100 2.174 20
GRD 16 187101 2.080 100 2.180 12
GRD 32 93550 2.085 95 2.173 9
GRD 64 46775 2.083 95 2.153 8
SSC 1 2993630 2.318 100 2.334 99
SSC 8 374203 2.270 100 2.291 19
SSC 16 187101 2.252 100 2.274 13
SSC 32 93550 2.235 100 2.252 11
SSC 64 46775 2.195 100 2.230 9

Table 6. LES runs corresponding to DNS case TP600a2. For all cases, grid is 72 × 80 × 44;
see table 1 for other initial conditions. Ncd,0 = Nd,0/NR is the initial number of computational
drops. DNS transition time t∗

trans = 105. CPU-hours: aggregate over parallel processors on SGI
Origin2000.

a priori study, when numerically stable, did perform much better than the Smagorinsky
model, which exhibited an inability to achieve transition. It was shown that the LES
data need to be studied from several different viewpoints (such as global measures
and correlations, contour plots, spectra and homogeneous-plane statistics), in order
to determine whether they replicate the DNS results. In particular, global correlations
and homogeneous-plane statistics were insensitive to the SRS activity, and may lead
to an erroneous assessment of the accuracy of an LES model. In contrast, globally
averaged vorticity measures were much more revealing of SRS structure, consistent
with contour plots and velocity spectra. Having evaluated the SGS-flux models in the
absence of drops, we now examine their performance in TP LES, where the flow field
and drops interact, and thus we additionally investigate the adequacy of the proposed
computational-drop models.

6. Two-phase-flow LES results
TP LES were performed for cases TP600a2 and TP600a5 listed in table 1 using

the same SGS-flux models as for SP600 discussed above, namely the GRC, SSC,
GRD and SMD SGS-flux models (described in § 2.4); however, the SMC model
was not used owing to its poor accuracy for SP600. The SMD model showed little
improvement over the SMC model, but is retained here due to its popularity with
TP LES researchers, such as listed in the Introduction. The GRC model also was
eliminated due to its numerical instability for TP600a5. Therefore, the only remaining
SGS-flux models were SSC, SMD and GRD (SSC using �̂ = �̄, SMD and GRD
using �̂= 2�̄). LES were conducted using these three models and the same FST
model (2.32) with NR of 1, 8, 16, 32 or 64; the simulations are listed in tables 6
and 7. The TP LES with any of the SSC, SMD and GRD models use comparable
amounts of CPU time, unlike for SP600 (table 4) where the SSC CPU time was
noticeably larger. The CPU time declines as the number of computational drops is
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δm/δω,0 δm/δω,0

SGS model NR Ncd,0 at t∗
trans t∗

peak at t∗
peak CPU-hours

SMD 1 7484075 2.233 95 2.292 264
SMD 8 935509 2.230 95 2.291 37
SMD 16 467754 2.230 95 2.287 21
SMD 32 233877 2.229 95 2.282 14
SMD 64 116938 2.227 100 2.277 10
GRD 1 7484075 2.358 105 2.358 265
GRD 8 935509 2.313 105 2.317 37
GRD 16 467754 2.293 105 2.293 21
GRD 32 233877 2.277 105 2.278 13
GRD 64 116938 2.301 105 2.302 10
SSC 1 7484075 2.185 105 2.189 256
SSC 8 935509 2.152 105 2.158 38
SSC 16 467754 2.135 105 2.138 22
SSC 32 233877 2.164 105 2.166 15
SSC 64 116938 2.165 105 2.165 11

Table 7. As table 6 but for LES runs corresponding to DNS case TP600a5.

decreased, but not proportionally since the number of grid points is kept constant;
the grid coarsening alone (NR = 1) accounts for a twenty-fold decrease in CPU time
for TP600a2 and a ten-fold decrease for TP600a5. An initial eight-fold decrease in the
number of tracked drops (NR = 8) leads to an additional five- to seven-fold decrease
in CPU time, with greater savings for TP600a5 which has the larger initial number
of drops. A further decrease in drops by the same factor (to NR =64) yields only a
two- to four-fold decrement in CPU time, indicating that the CPU-time benefit of
increasing NR decreases as NR becomes larger.

Following the format of § 5, we will evaluate the performance of the models by
presenting the evolution of the global quantities, followed by flow visualizations,
energy spectra, homogeneous-plane statistics and global correlations. The focus is
here particularly on TP600a5, because it was not part of the a priori study in Part 1;
unless otherwise noted, results for TP600a2 are similar. Results will be presented
mostly for NR =8, with some comments regarding the influence of the NR value. For
analysis purposes, NR = 8 is the lowest value studied that is greater than unity (NR =1
uses physical not computational drops), at still considerable computational savings
over NR = 1 and, if accurate, the NR = 8 LES would demonstrate the feasibility of the
computational-drop model.

6.1. Evolution of the global quantities

Depicted in figure 9 is the evolution of the global quantities for case TP600a5 with
NR = 8, for LES utilizing the SSC, GRD and SMD models. For all three SGS models,
all layers roll up and pair twice. The growth of the layers, as measured by δm (3.1),
is the same on the DNS and FC-DNS fields. In figure 9(a), the SMD-model δm is
less than the FC-DNS value throughout the layer evolution, and, except for a short
period after the second pairing, is also always smaller than the GRD value. Both the
GRD and the SSC models slightly over-predict δm until the second pairing time, after
which the layer growth is under-predicted, with the deviation being greater for the
SSC model (that is, the SSC value is larger than the GRD one at earlier times and
smaller at later times). Similar results are obtained for TP600a2, except that the SMD
δm is larger than the GRD value for a longer period after the second pairing, and
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Figure 9. Time evolution of non-dimensional global quantities for TP600a5: (a) momentum
thickness, (b) product thickness, (c) average positive spanwise vorticity, (d) average enstrophy,
(e) average drop temperature and (f ) average drop diameter-squared. DNS; FC-DNS with
NR = 8; LES using SMD, GRD and SSC SGS-flux models with NR = 8. M0 = 6.214(10−3) kg
is the initial mass in the domain, d0 = 7.880(10−5) m.

the SSC δm is consistently greater than the GRD one. For TP600a2, compared to the
FC-DNS δm value of 2.627, δm at the DNS transition time (see NR = 8 runs in table 6)
is 15%, 20% and 14% lower for the SMD, GRD and SSC models, respectively. The
comparable results for TP600a5 (see NR = 8 runs in table 7) are 15%, 11% and 18%
lower for the SMD, GRD and SSC models, respectively. These δm errors are larger
than those obtained for SP600 LES. Similar to SP600, the peak momentum thickness
time t∗

peak for the TP600a2 LES, listed in table 6, occurs sooner and has a smaller δm
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than the FC-DNS. For TP600a5 (table 7), t∗
peak is well-predicted by the SSC and GRD

models but occurs sooner for the SMD model; however its δm is under-predicted by
all models. For both TP600a2 and TP600a5, δm is minimally affected by the value of
NR (see tables 6 and 7).

The global mixing of the TP600a5 layers, as measured by the product thickness
δP =

∫
domain

ρ[2 min(YV , YC)] dV in figure 9(b), is the same on the DNS and FC-DNS
fields; δP is predicted best by the SMD model. The GRD prediction is also very
close to the FC-DNS, with a slight over-prediction from the GRD model between
the first pairing and the DNS transition time; the SSC model leads to similar results.
The same trends are found for TP600a2, although the SMD δP curve is much closer
to the FC-DNS. Although the SMD and GRD models seem comparable when
considering δm and δP , dramatic differences emerge when the vorticity activity of the
layers is examined. The global positive spanwise vorticity (〈〈ω+

3 〉〉 in figure 9c) and
enstrophy (〈〈ωiωi〉〉 in figure 9d) display similar behaviour as for SP600 (figure 4),
with the GRD model yielding good predictions while the SMD model exhibits strong
departures from the FC-DNS and minimal vorticity activity. The SSC predictions
are somewhat inferior to those obtained with the GRD model in that the vorticity
activity is further reduced from the FC-DNS.

Finally, the drop-ensemble-average (denoted {{}}) of temperature Td and diameter-
squared d2 (figures 9e and 9f for TP600a5), of the FC-DNS drop field, which match
those of the DNS (physical) drop field, are closely followed by all three LES models.
For {{Td}}, the GRD model overlaps the FC-DNS until t∗ � 45, approximately the
time of the first pairing, after which it is smaller until t∗ � 95, while the SMD slightly
under-predicts {{Td}} until t∗ � 65, and thereafter slightly over-predicts it until t∗ � 95;
at the later times, after t∗ � 95, both the GRD and SMD predictions overlap the FC-
DNS. The SSC model tends to a minor over(under)-prediction of {{Td}} before(after)
t∗ � 45. As elaborated by Le Clercq & Bellan (2004), the oscillations in {{Td}} are due
to the competing effects of heating, which removes energy from the gas phase, and
evaporation, which releases energy into the surrounding gas. In considering {{d2}},
it is apparent that, because this is an ensemble-average result, the drops do not
follow the single-drop ‘d2 law’ (linear decay; Williams 1965); after an initial period
of high rate of {{d2}} decrease, this rate subsides as the increasing YV impedes
evaporation. The SMD model is slightly superior to the other two models, which
have virtually identical results for {{d2}}. The three SGS-flux models display slightly
better predictions of {{Td}} and slightly worse predictions of {{d2}} for TP600a5 than
for TP600a2.

The global quantities show that δm, δP , {{Td}} and {{d2}} are slightly better predicted
by the SMD model than by the SSC and GRD models. However, this superiority of
the SMD model is strongly negated by its poor predictions of the SRS activity, for
both the positive spanwise vorticity and the enstrophy. Furthermore, as shown below,
despite having good predictions for δP , {{Td}} and {{d2}}, the SMD model fails to
capture the details of the spatial distribution of the drops.

6.2. Flow visualizations

Flow visualizations allow a more comprehensive qualitative comparison of the LES
to the FC-DNS; all plots presented are for TP600a5 at the DNS transition time
t∗
trans = 105. The spanwise and streamwise vorticity are plotted in figure 10 for the
FC-DNS and the SMD, GRD and SSC LES (compare to figures 5 and 6 for SP600).
Once again, the SMD model is shown to be incapable of generating the SRS
structures, while the GRD and SSC models qualitatively capture the FC-DNS vorticity
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distribution. However, while the SRS activity is qualitatively well duplicated by the
SSC and GRD models, what is clearly under-predicted is the size of the large spanwise
vortex; this is totally consistent with figure 9(a) which shows the under-prediction of
δm by both these models. The streamwise vorticity is similar to the SP600 result in
figure 6 in that for the GRD and SSC models it mimics that of the FC-DNS, while
for the SMD model it retains the structure of the initial condition perturbations.

The cross-stream mixing of the vapour and drops can be assessed from analysis
of figure 11, which shows the TP600a5 vapour mass fraction (YV ) and drop number
density (ρn =Nβ/Vf , where Nβ is the number of drops in the filtering volume Vf ), for
the FC-DNS and the SMD, GRD and SSC LES, all with NR = 8, in the between-the-
braid plane. Equivalent plots for TP600a2 are similar except for lower drop number
density. Figure 11(a) shows a complex FC-DNS drop organization, with preferential
distribution away from high-vorticity regions into low-vorticity regions depicted in
figure 10(a) (also see Part 1). Since figure 11(a) is virtually identical to the equivalent
figure for the FC-DNS ρn computed with the full physical drop field (NR = 1; not
shown), NR =8 does accurately capture the liquid-phase situation. Inside the layer,
regions of high ρn correspond to the highest YV regions, portrayed in figure 11(b).
The highest YV overall occurs in the lower stream, which has a nearly uniform drop
distribution at a value intermediate in the ρn range. The FC-DNS YV plots show
the ultimate vortex as the largest structure, with complex SRS activity within it. In
considering the SMD model prediction, both ρn (figure 11c) and YV (figure 11d) show
a qualitatively different aspect than the FC-DNS. The SMD model has captured
the ultimate vortex, but it is devoid of any SRS activity; the drops are mostly
concentrated at the vortex edges with few drops within the layer, the highest drop
concentration occurring in a narrow band in the lower stream around the ultimate
vortex. Therefore, the indications are that the SMD model is an inadequate SGS
model, since it fails in its primary purpose of reproducing the SRS motions of the
flow. In contrast, the GRD model has predictions that are both qualitatively correct
and quantitatively close to the FC-DNS field, in that the ρn distribution (figure 11e)
follows the FC-DNS in both the lower-stream distribution as well as the regions
of high ρn within the layer. The GRD YV field (figure 11f ) shows both large-scale
and SRS activity, although, as expected, smeared due to the solution being obtained
on a coarser (LES) grid. The SSC model predictions (figure 11g and 11h) are also
qualitatively similar to the FC-DNS, although the mass fraction in the lower part of
the mixing region is slightly smaller.

Therefore, from figure 11, the gas-phase SGS-flux model is here seen to substantially
affect the spatial distribution of the drops. Because, in the present LES approach, the
computational drops obey the same equations as physical drops, they will likewise be
preferentially distributed into low-vorticity regions. Whether the final drop distribution
mimics the FC-DNS depends on whether the SGS models are able to create the
physically correct low-vorticity regions. As demonstrated by the comparison just
discussed, the GRD and SSC models are successful in capturing the distribution of
drops observed in the FC-DNS.

To ascertain the effect of computational-drop modelling, illustrated in figure 12
are TP600a5 GRD LES results obtained with sequentially smaller numbers of
computational drops. Notably, comparing the NR = 8 result (previously depicted
in figures 11e and 11f ) to NR =1 (figures 12a and 12b), no new qualitative features
are observed in either the ρn or the YV plots when the number of computational
drops is reduced from the number of physical drops, although for NR = 1 the drop
distribution in the lower stream is more uniform. The NR = 16 LES (figures 12c
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Figure 11. Drop number density in m−3 (left) and vapor mass fraction (right) for TP600a5
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Figure 13. Energy spectra of u1 for TP600a5 at t∗ = 105: (a) streamwise and (b) spanwise.
Energy in m2 s−2.

and 12d) is virtually the same as the NR =8 result. The accuracy of the GRD model
shows no significant degradation when NR is increased to 32 (figures 12e and 12f ),
although the lower-stream ρn distribution is less uniform. Finally, for NR =64, the
aspect of the layer is still qualitatively correct for the vapor mass fraction (figure 12h).
For TP600a2 with NR =64, regions of very low and very high drop number density
appear in the lower stream, which do not appear at smaller NR . Therefore, from these
simulations, the indications are that the maximum drop reduction that replicates both
the drop field and the fuel vapour should be NR = 32; the drop reduction by a factor
of 32 from the DNS is less than the 64-fold reduction in the number of grid points.

6.3. One-dimensional spectra of velocity components

To assess the energy content of various scales of the flow, one-dimensional streamwise
and spanwise energy spectra were computed for both TP600a2 and TP600a5; these
spectra resemble those of SP600 (figure 7). Figure 13 clearly shows the energy versus
wavenumber (k) distribution of the GRD model to be the closest to the FC-DNS, with
the SSC closely following the GRD results, while the SMD model is the farthest from
the FC-DNS. For the spanwise spectra, sharp peaks are evident for the SMD model,
corresponding to the structures seen in the streamwise vorticity plots (in figure 10),
which result from persistence of the initial perturbation. In contrast, the SSC and
GRD models show no such structures. Therefore the same conclusions as distilled
from the SP600 results hold: the SMD model does not allow the development of true
turbulence.

6.4. Homogeneous-plane gas-phase statistics

Selected homogeneous-plane averages and fluctuations are presented in figure 14 for
TP600a5, for comparison with figure 8 for SP600 (being null for SP600, YV was
not plotted there). Due to the temperature difference between drops and carrier gas,
and the ensuing evaporation, the thermodynamic quantities differ between the two
free streams. The DNS and FC-DNS overlap for the planar averages of all plotted
quantities; whereas for SP600 the T fluctuations overlapped for DNS and FC-DNS
while the T averages differed, for TP600a5 the opposite behaviour is observed. As
noted previously, the difference between the DNS and the FC-DNS quantities indi-
cates sensitivity to the SGSs that are lacking in the FC-DNS. In predicting the
averages and fluctuations of u1 and u3 (not shown), all models perform much as they
did for SP600, with comparably good predictions for u1, and the SMD somewhat
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Figure 14. Homogenous-plane statistics of gas-phase quantities for TP600a5 at t∗=105: (a, b)
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worse than the other models, under-predicting the u3 fluctuations even more. However,
noticeable improvement is observed in predicting u2 averages, for which all models
yield reasonable results, indicating that the different u2 average profile is easier to
predict in the TP600a5 case. On the other hand, for the SMD and SSC models, the
comparison with FC-DNS for the u2 fluctuations is less favourable in the TP600a5
case. For both averages and fluctuations of T and YV , the GRD and SSC results
are similar; both models give good results in the upper stream, but have some over-
or under-predictions in the lower stream. The SMD performs similarly to the other
two models in predicting the T averages. The SMD model is the best for the YV

averages, and for the lower-stream fluctuations of T and YV , but is the worst for the
upper-stream fluctuations of T and YV . Regarding ρ and p (not shown), the averages
are predicted better by all models for TP LES than for SP LES, with the SMD
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showing the greatest inaccuracy in duplicating the ρ and p fluctuations. Therefore,
the SMD model is inferior to the GRD and SSC model only when the upper-stream
thermodynamic fluctuations are considered, but is comparable to them for the other
planar quantities. Similar to the discussion for SP600, these planar results need to be
cautiously interpreted, since they do not reveal the qualitative differences among the
models that were observed in the contour plots in figures 10 and 11.

6.5. Homogeneous-plane liquid-phase statistics

Parallel to the gas-phase statistics just discussed, drop-based planar averages and
fluctuations for TP600a5 LES are plotted in figure 15 for the drop velocity, mass and
temperature. For the drop-phase statistics, the value of each dependent variable at a
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grid point x2,j is computed using all the drops located in x2,j − �x2/2 <X2 <x2,j +
�x2/2 (where X2 and �x2 are the drop position and the grid spacing, respectively,
in the cross-stream direction); the average over these drops is denoted {} and is
undefined in the portion of the domain without drops. Some of the drop-based
statistics, especially for Td , suffer from the sparsity of drops in the upper stream.
Figure 15 also includes the average number of physical drops, {n}, predicted by all
models, which is comparable (figure 15e), as the planar averaging generally masks the
obvious differences in drop spatial distribution that were observed in figure 11. For the
SMD case, peaks in the upper-layer region at the edge of the free stream indicate that
the drops congregate at incorrect locations, that is, in regions other than those of the
FC-DNS.

The performance of the models in predicting the drop velocity statistics mimics that
for the gas-phase velocity (only v2 is shown): the average of v1 is equally well predicted
by all models; overall the SSC model gives the best results for v3 averages; the GRD
model tends to over-predict the v3 average, while the SMD model tends to under-
predict it; for the velocity fluctuations, the GRD and SSC models generally perform
better than the SMD model, whose v3 fluctuations inside the layer are less than half of
the FC-DNS fluctuations. The average mass of the drops (figure 15f ) is well-predicted
by all LES in the lower stream. In the upper part of the layer, the md average is
somewhat under-predicted by both the SSC and GRD models, yet is nonetheless
closer to the FC-DNS than is the SMD average; the large discrepancies between the
SMD case and the FC-DNS are consistent with the peak identified in figure 15(e) in
the same region. All models have reasonable predictions for the md fluctuations (not
shown). The three models give distinctly different results for the Td average (figure 15c)
with the GRD model giving good agreement with the FC-DNS throughout the layer.
The SSC Td averages are similar to the GRD, except for under-prediction in the
lower stream. For the SMD model, the Td average exhibits a physically incorrect non-
monotonic behaviour in the lower part of the layer; moreover, the SMD-model drops
are too cold in the upper part of the layer. While the SMD model is the worst for the
Td averages, it has the best Td fluctuations (figure 15d). In the upper stream, the SMD
model agrees well with the FC-DNS for the Td fluctuations, whereas the SSC and
GRD models greatly over-predict them; in the lower stream, all models over-predict
the Td fluctuations. The error in Td is here conjectured to result from its sensitivity
to the gas-phase flow field, which in LES is interpolated to the drop locations with a
larger grid spacing than in DNS; therefore, this error may be inherent in LES.

6.6. Flow-field correlations

Finally, the LES using the SSC, SMD and GRD models with various values of NR

were correlated with the FC-DNS using least-squares fits (3.3); the results yield similar
values to those for SP600 (see § 5.5 and table 5) for all SP variables. Comparing the
SSC, SMD and GRD models, the slopes and correlations, which ideally would be
unity, are similar, although those for the SMD model are generally the smallest and
those of the GRD model are generally the largest. For YV (which was null for SP600),
the slopes were in the range 0.95 to 0.97 across the SGS models and ML0 values,
and the correlations ranged from 0.86 to 0.94 with the best being for the GRD and
the worse for SMD. Therefore, as for SP flow, comparisons of the LES flow field to
DNS data must be made from a different standpoint than global correlations. These
results were independent of NR , even when NR was increased to 64. Thus, it appears
that global correlations, if used to compare simulations with experimental data (here
represented by the FC-DNS), may not be able to identify a model deterioration when
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Slopes Correlations

NR 1 8 16 32 64 NR 1 8 16 32 64

S̄I 1.23 1.34 1.40 1.32 1.34 S̄I 0.71 0.72 0.72 0.69 0.69
S̄II,1 0.89 0.81 0.83 0.77 0.75 S̄II,1 0.59 0.58 0.57 0.55 0.54
S̄II,2 0.55 0.55 0.53 0.57 0.52 S̄II,2 0.49 0.46 0.43 0.47 0.42
S̄II,3 −0.05 −0.01 −0.02 0.05 0.02 S̄II,3 −0.03 0.00 −0.01 0.03 0.01
S̄III 1.25 1.36 1.43 1.35 1.36 S̄III 0.68 0.69 0.69 0.65 0.66

Table 8. Slopes (exact/model) and correlations from least-squares fit of FC-DNS to LES
flow-field quantities for LES runs in table 7 using GRD Model: TP600a5 at t∗ = 105.

NR is increased. Therefore, at this point, flow visualizations appear to be the best
diagnostic for selecting NR .

Similar slopes and correlations for the FSTs were tabulated for the SSC, SMD and
GRD models with various values of NR; as an example, the results for TP600a5 using
the GRD model are presented in table 8. In contrast to the a priori analysis (Part 1
and § 4 above), where the FSTs were always over-predicted, for the SSC-model and
GRD-model LES, some FSTs are instead under-predicted. For the SMD-model LES,
the FSTs are over-predicted, but the slopes are not necessarily farther from unity
than those from the GRD model; however, the correlations are generally lower. The
SSC model has similar correlations as the GRD model. Similar to the findings for
the flow field, there appears to be little impact on the correlations upon increasing
NR from 1 to 64.

6.7. Summary of TP LES results

The TP LES have generally confirmed the conclusions reached from the SP LES re-
garding the SGS-flux modelling. From the standpoint of numerical stability, it appears
that the TP LES is more sensitive to the SGS-flux model than is the SP LES; specific-
ally, the GRC model is unstable despite using the DNS-calibrated coefficients that
were a priori statistically equivalent for TP and SP flows. However, when numerically
stable, the SGS-flux models performed similarly for SP and TP LES; in particular, the
SMD model showed in both cases an inability to generate SRSs while the GRD and
SSC models led to flow fields with SRS structures that mimicked the FC-DNS. For the
GRD and SSC models, the spatial distribution of drop number density and of vapour
that had emanated from the drops was consistent with the FC-DNS, and the LES pre-
dictions were also quantitatively good. For the SMD model, the poor replication of the
SGS activity led to a distinctively incorrect drop spatial distribution, with drops con-
centrated at the incorrect locations. Thus, the benefit of having compared the SGS-flux
models in the SP flow is evident, in that the inadequacies of the SMD LES can incon-
trovertibly be attributed to the gas phase; more generally, SGS-flux models that per-
form poorly for SP flows can be eliminated in advance from consideration for TP flows.
LES conducted with a 64-fold reduction in the number of drops compared to the DNS
showed that the SSC-model and GRD-model LES exhibited good results, although
with slightly diminished accuracy compared to a 32-fold reduction in the number of
drops. Further increases in the number of computational drops did not significantly
improve the results, although the analysis focused on the LES with an eight-fold reduc-
tion in drops, which still achieved considerable computational savings over the DNS.
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7. Conclusions
Large-eddy simulation (LES) has been performed of three-dimensional temporal

mixing layers, both single-phase (SP) and two-phase (TP) with evaporating drops.
The LES results have been compared to previous direct numerical simulation (DNS),
documented in Part 1, conducted at the same initial vorticity-thickness Reynolds
number (600) and mass loading conditions. Both DNS and LES used an Eulerian
frame for the gas phase and a Lagrangian frame for the drop (liquid) phase. The
coupling between the phases is provided by source terms in the gas-phase equations
and by each drop having as its far field the gas-phase variables at its location. In order
to create a consistent LES methodology, in which both the number of grid points
and tracked drops can be reduced compared to the DNS, we have used the LES
methodology developed in Part 1 of this study. The LES follows the DNS as much
as possible, and requires models only for the subgrid-scale (SGS) fluxes and filtered
source terms (FSTs) in the gas-phase equations. Computational-drop modelling is
used in LES such that the evolution of the computational drops is governed by
the same equations as govern the physical drops; then each computational drop
is taken to represent a (fixed) number of physical drops. The unfiltered flow field
required for the calculation of each drop’s source-term contribution is approximated
by the filtered flow field. Both DNS and LES are computed using eighth-order
finite differences, fourth-order Runge–Kutta temporal integration and fourth-order
interpolation of gas-phase variables from grid points to drop locations; maintaining
the same numerical scheme removes the possibility of numerically added dissipation
in LES when compared to DNS. All LES were conducted with a grid spacing that
was four times larger than the DNS (64-fold reduction in the number of grid points).

Since the a priori study of the SGS-flux models (Part 1) showed statistical equi-
valence of model coefficients for transitional states of SP and TP flows, the SP LES
were undertaken to independently study SGS-flux modelling without FST modelling.
For the SP layer, we have tested constant-coefficient SGS-flux models, which were
previously calibrated on the DNS database (Part 1), and dynamic SGS-flux models.
Both the constant-coefficient and dynamic Smagorinsky models (SMC and SMD,
respectively) were numerically stable but led to LES flow fields unlike the filtered-and-
coarsened (FC) DNS flow fields in that they were devoid of small-resolved-scale (SRS)
activity. While the Smagorinsky model might perform better for flow configurations
requiring turbulent initial conditions and/or when solid walls (at which vorticity is
always generated) are present, this model is deemed unsuitable for the present mixing-
layer situation where the flow is required to undergo transition to turbulence from
a laminar initial condition. The other three models considered, constant-coefficient
and dynamic gradient models (GRC and GRD respectively) and the scale-similarity
model (SSC), led to good predictions for the filtered flow field.

For the TP layer, we conducted LES at two mass loadings, 0.2 and 0.5. The GRC
model was not consistently numerically stable and the SMC model was eliminated due
to its poor accuracy for SP flow; thus LES were performed with SSC, GRD and SMD
models. The computational-drop and FST modelling performed well at both mass
loadings considered. Although by some measures – such as momentum and product
thicknesses, drop-averaged temperature and diameter-squared, homogeneous-plane
statistics (averages and fluctuations) and flow-field correlations – the three models
yielded similar results, the LES flow fields they produced were qualitatively different.
The SMD-model LES field lacked SRS activity and had drops concentrated on the
edges of the ultimate vortex, while the SSC-model and GRD-model LES resembled
the FC-DNS in having significant SRS structures, with drops dispersed throughout the
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ultimate vortex and preferentially concentrated in low-vorticity regions. The behaviour
of the models in predicting the gas-phase flow field of TP LES paralleled their
performance in the SP LES, and moreover corresponded to the a priori correlation
between the models and the SGS fluxes. Measures based on the vorticity, namely
average positive spanwise vorticity and enstrophy, were found to correlate well with
the prevalence of SRS structures. This led to the conclusion that the measures
traditionally used to justify the Smagorinsky model, such as planar quantities, may
be misleading, and that the assessment of the capabilities of an LES model should
include an examination of the local behaviour of the flow field and drop variables.

By systematically comparing LES that were conducted using different numbers of
computational drops, it was possible to discern the number of computational drops
required to preserve the qualitative aspects of LES using physical drops. We note that
using physical drops in LES yields significant computational savings over DNS due
to the grid coarsening alone, but as indicated by the a priori study, the physical drop
evolution is not necessarily more accurate than that of computational drops since
the flow field encountered by the drops is different in LES than in DNS. A good
starting point for determining the number of computational drops was to use the
same reduction as for the grid spacing. The determination of the minimum number
of computational drops that can yield acceptable accuracy, in the general case where
DNS or experimental data are absent, remains an open question.

In essence, we have shown that two-phase LES can be successfully conducted
using SGS-flux models developed for SP flows. However, despite statistical a priori
equivalence of constant-coefficient models, not all stable models in the SP case were
also stable for TP flows, although all those that were stable for TP flows were also
stable for SP flows. This difference in stability characteristics may be attributed to
the drops, whose source terms were found a priori to be the major contribution of
(entropy) dissipation for the gas-phase. Unlike the flux-related dissipation, which is
the sole SP dissipation mechanism and is always positive semi-definite, the source-
related dissipation may be negative or positive at the SGS, that is, adding or removing
entropy from the resolved flow field. Therefore, while SGS-flux models can be derived
and tested in computationally less demanding SP flow, they must be verified on TP
flows to account for the interaction between the SGS-flux models and drop evolution.
Numerical stability was achieved without the use of mixed models (Bardina et al.
1980; Vreman et al. 1997), which contributed to the computational efficiency. The
GRD SGS-flux model used in this study was more accurate than the Smagorinsky
model, while being no more computationally expensive or algorithmically complicated.
The GRD model performed comparably to the SSC model, but unlike it, has the
advantage of not requiring an a priori calibrated coefficient. The GRD model has also
shown an ability to handle both laminar and transitional flows, a notoriously difficult
test. This model must be further tested at higher Reynolds numbers and for spatial
configurations, and then be validated with experimental data, in order to determine
its suitability for routine LES simulations.

Two main areas of model development are therefore anticipated for future studies.
First, in order to validate the LES with experimental data, simulations should be
conducted in a spatial configuration, in contrast to the temporal setting used in
the present study. Second, the FST models considered in the present study included
the assumption that the drops were affected only by the filtered flow field without
direct SGS effects (i.e. the baseline unfiltered-flow-field model of Part 1). Possible
improvements, if necessary, may be attained by basing the FST models on a recon-
struction of the DNS flow field, that is the filtered flow field with added SGS effects,



Consistent large-eddy simulation of a temporal mixing layer. Part 2 77

such as the deterministic FST model of Part 1. That FST model uses the SGS
variances, which have a similar form to the SGS-fluxes, and, as shown in Part 1,
can be modelled in the same manner, i.e. using the Smagorinsky, gradient and scale-
similarity models. However, using the SMD model to incorporate direct SGS effects
on the drops seems likely to be disastrous since those effects would be incorrectly
added, thus compounding the model errors; using the GRD or SSC models appears
a more promising approach.

This work was conducted at the Jet Propulsion Laboratory (JPL) of the California
Institute of Technology, and was sponsored by the US Department of Energy (contract
monitors were R. Danz, Headquarters and D. Hooker, Golden Center) under an
agreement with the National Aeronautics and Space Administration. Computations
were performed on the SGI Origin2000 at the JPL Supercomputing Center.
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